Observations and Modeling of Potassium Emission in the Terrestrial Nightglow

2019 
The ablation of cosmic dust entering the atmosphere causes the formation of an atomic potassium (K) layer in the mesopause region. It can be studied via resonance fluorescence from the K(D1) line at 769.9 nm, stimulated by sunlight or a laser. In addition, the faint emission from a chemiluminescent cycle involving ozone and oxygen atoms has been observed with a nocturnal mean intensity of about 1 Rayleigh. In this study, the K nightglow is investigated in much greater detail, using 2,299 high‐resolution spectra taken with the astronomical echelle spectrograph Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile (24.6°S) between 2000 and 2014. The seasonal variation is dominated by a maximum in June. During the night, the highest intensities are found close to sunrise. Moreover, there is a clear negative correlation with solar activity. These variations are very different from those of the well‐studied sodium (Na) nightglow. The K nightglow at Cerro Paranal was also simulated with the Whole Atmosphere Community Climate Model including K chemistry. The observed and modeled climatologies do not match well, largely because of unreliable Whole Atmosphere Community Climate Model ozone densities. Satellite‐based profile retrievals for ozone and temperature from Sounding of the Atmosphere using Broadband Emission Radiometry and K from Optical Spectrograph and Infrared Imaging System were then used to simulate the K nightglow and to derive the quantum yield of the K(D) emission with respect to the reaction of K with ozone. Considering that the obscured K(D2) line is expected on theoretical grounds to be 1.67 times brighter than K(D1), we find about 30% for this quantum yield, which is much higher than for Na(D) emission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    4
    Citations
    NaN
    KQI
    []