Separation of methanol-chloroform mixture using pressure-swing distillation: Modeling and optimization

2020 
The separation of methanol-chloroform mixture, a minimum-boiling azeotrope, is performed using pressure- swing distillation process via process simulation. In this study, the steady-state optimization was carried out using PRO/II with PROVISION v.10. The two different column configurations (low-to-high pressure and high-to-low pressure) were compared wherein the positions of the low-pressure column and high-pressure column were operated interchangeably to attain an optimized design. Additionally, different heat-integration configurations (partial heat- and full heat-integration) were applied to lessen the overall utility consumption. It was determined that the low-to-high pressure column configuration provided a more optimized result for all heat-integrated systems as compared to high-tolow pressure column configuration. Application of heat-integration further decreases the cooling water and steam consumption by 38.86% and 35.74%, respectively, for partial heat-integrated system, and by 44.58% and 41.01%, respectively, for full heat-integrated system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    2
    Citations
    NaN
    KQI
    []