Modeling a planar sheath in dust-containing plasmas

2014 
One-dimensional fluid model is utilized to describe the sheath at a dust-containing plasma-wall boundary. The model equations are solved on the scale of the electron Debye length. The spatial distributions of electric potential and of the velocities and densities of charged species are calculated in a wide range of control parameters. The dust charge number, electric force, and ion drag force are also investigated. The impacts of Havnes parameter, the electron to ion temperature ratio, the ion collisionality, and the ionization on the spatial distributions of the plasma species and the incident fluxes of the ions to the wall (or to the probe) are investigated. With increase of Havnes parameter, the sheath thickness and the ion flux to the wall are reduced, whereas the ion drift velocity is increased. Enhanced ion thermal motion causes the ion flux to the wall to increase. An increase in ion collisionality with neutrals causes both the sheath thickness and the ion flux to the wall to decrease. With increas...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []