Patient-specific modeling of right coronary circulation vulnerability post-liver transplant in Alagille’s syndrome

2018 
OBJECTIVES: Cardiac output (CO) response to dobutamine can identify Alagille's syndrome (ALGS) patients at higher risk of cardiovascular complications during liver transplantation. We propose a novel patient-specific computational methodology to estimate the coronary autoregulatory responses during different hemodynamic conditions, including those experienced in a post-reperfusion syndrome (PRS), to aid cardiac risk-assessment. MATERIAL AND METHODS: Data (pressure, flow, strain and ventricular volumes) from a 6-year-old ALGS patient undergoing catheter/dobutamine stress MRI (DSMRI) were used to parameterize a closed-loop coupled-multidomain (3D-0D) approach consisting of image-derived vascular models of pulmonary and systemic circulations and a series of 0D-lumped parameter networks (LPN) of the heart chambers and the distal arterial and venous circulations. A coronary microcirculation control model (CMCM) was designed to adjust the coronary resistance to match coronary blood flow (and thus oxygen delivery) with MVO2 requirements during Rest, Stress and a virtual PRS condition. RESULTS: In all three simulated conditions, diastolic dominated right coronary artery (RCA) flow was observed, due to high right ventricle (RV) afterload. Despite a measured 45% increase in CO, impaired coronary flow reserve (CFR) (~1.4) at Stress was estimated by the CMCM. During modeled PRS, a marked vasodilatory response was insufficient to match RV myocardial oxygen requirements. Such exhaustion of the RCA autoregulatory response was not anticipated by the DSMRI study. CONCLUSION: Impaired CFR undetected by DSMRI resulted in predicted myocardial ischemia in a computational model of PRS. This computational framework may identify ALGS patients at higher risk of complications during liver transplantation due to impaired coronary microvascular responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    9
    Citations
    NaN
    KQI
    []