Exploring the sterically disfavored binding of acetylene to a geminal olefinic hydrogen-fluorine atom pair: The microwave spectrum and molecular structure of cis-1,2-difluoroethylene–acetylene

2020 
The microwave rotational spectrum of the gas-phase bimolecular heterodimer formed between cis-1,2-difluoroethylene and acetylene is obtained using Fourier transform microwave spectroscopy from 5.9 to 21.2 GHz. Rotational constants derived from the analysis of the spectra for the normal isotopologue and singly substituted (13)C isotopologues, obtained in natural abundance, allow the determination of the structure of the complex, which, in the absence of a fluorine-hydrogen atom pair located cis to each other, adopts a sterically disfavored geometry ("side-binding") in which the acetylene interacts with a geminal fluorine-hydrogen atom pair. Structural details are found to be similar to those of previously studied heterodimers with side-binding of acetylene to fluorine while reflecting the degree of halosubstitution. A detailed comparison with the (Z)-1-chloro-2-fluoroethylene-acetylene complex reveals information regarding the relaxed steric requirements for hydrogen bonding to chlorine as opposed to hydrogen bonding to fluorine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []