Fractional flow reserve for coronary stenosis assessment derived from fusion of intravascular ultrasound and X-ray angiography

2021 
Background Intravascular ultrasound (IVUS) provides good insight into lumen boundary and plaques; however, it is still difficult to detect functionally significant stenosis from IVUS images for the guidance of coronary percutaneous intervention (PCI). This study aimed to develop a novel method to estimate fractional flow reserve (FFR) value for determining the functional significance of coronary artery disease through the fusion of IVUS and X-ray angiographic images. Methods We developed a novel approach to 3D vessel reconstruction by integrating IVUS with X-ray angiographic images. Based on the reconstructed geometry and the inlet flow derived from the thrombolysis in myocardial infarction (TIMI) frame count, a simplified fluid dynamics equation was established to compute the pressure drop and IVUS-derived FFR (AccuFFRivus) was subsequently obtained. To validate the feasibility and performance of this IVUS-based FFR method, we performed AccuFFRivus calculations on 32 coronary vessels with invasive FFR as the reference standard. Results Great correlation (r=0.86, P<0.001) was observed between AccuFFRivus and FFR. The area under the receiver-operating characteristic curve (AUC) was higher for AccuFFRivus than minimal lumen area (MLA, <4 mm2) and diameter stenosis rate (DS% ≥50%) [0.98 (95% CI: 0.86 to 1.0) vs. 0.78 (95% CI: 0.60 to 0.91) and 0.66 (95% CI: 0.47 to 0.82)]. Bland-Altman plot showed a mean difference value of -0.011 (limits of agreement: -0.156 to 0.134). Conclusions AccuFFRivus is a novel method for hybridizing IVUS and X-ray angiographic images to identify functionally significant stenosis with FFR ≤0.80. The good diagnostic performance from the initial validation study demonstrates the potential for clinical utilization of physiologically guided decision-making. Further validation is required in future studies with a large number of cases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []