Effect of cooling rate on phosphorus segregation behavior and the corresponding precipitation of γ″ and γ′ phases in IN718 alloy

2019 
Abstract Effect of segregation behaviors of P at different cooling rates on the precipitation of γ″ and γ′ phases and the corresponding strength are investigated. The precipitation of γ″ and γ′ phases during cooling is sensitive to P concentration. With increasing the concentration of P, the amount of γ″ and γ′ particles increases after air cooling. With decreasing the cooling rate, the accelerating effect of P on the precipitation of γ″ and γ′ phases decreased first and then increased, which demonstrates the concentration of P dissolved in the grain interior decreases first and then increases. The different effects of P on γ″ and γ′ phases with different cooling rates were analyzed by the kinetic characteristic of nonequilibrium grain-boundary segregation. The characteristic of nonequilibrium grain-boundary segregation of P in superalloy is further confirmed, and the phenomenon caused by critical cooling rate is captured.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []