[Expression of UCP3 and the sensitivity of mitochondrial permeability transition pore opening to Ca2+ in old rat heart under activation of biosynthesis of coenzyme Q].

2009 
: The expression of mitochondrial uncoupling protein 3 (UCP3), as well as the sensitivity of mitochondrial permeability transition pore opening (MPTP) to Ca2+ (10(-4) mol/l) in old rat heart under activation in vivo of ubiquinone synthesis--coenzyme Q, (CoQ) via administration of the precursors (4-hydroxybenzoic acid, aminoacid methionine and modulator vitamin E) were studied. It was shown that the expression level of UCP3 decreased by 63% in old rats compared to adult rats and this was accompanied by an increased sensitivity of the MPT to calcium. Under activation of endogenous synthesis of CoQ it was observed almost complete restoration of UCP3 expression in old rat heart and a decrease in the sensitivity of the MPTP opening to Ca2+. In mitochondria from old rat hearts we noted an increased content of the superoxide (O2) and hydroxyl (OH) radicals and of the stable metabolite of active oxygen species hydrogen peroxide (H2O2), as compared to those in adult animals. Following activation of endogenous synthesis of CoQ in old rat heart mitochondria it was observed a decreased content of H2O2, and the tendency for decreasing the levels of the radicals O2 and MOH. The results obtained allowed to conclude that the CoQ-dependent restoration of the UCP3 levels in old rat heart and antioxidant/cardioprotective effects of CoQ related to the MPTP opening inhibition can reduce the oxidative stress and thus prevent the manifestation of mitochondrial dysfunction in aging heart. We suggest that UCP3 is not involved in the increase of the passive H-conductance through the inner mitochondrial membrane in the aging heart, and that CoQ as a factor of respiratory chain could be an important endogenous regulator of the uncoupling proteins, in particular UCP3, in the heart.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []