Hardware Implementation of Brain-Inspired Amygdala Model

2019 
Deep neural networks (DNNs) have achieved state-of-the-art results in several computing tasks. However, the performance of these DNNs is reliant on the availability of large amounts of training data, which is not always present. We approached this problem by developing a brain-inspired amygdala model to achieve computer learning based on limited training data. The amygdala is an area of the brain associated with classical fear conditioning. The proposed amygdala model is composed of a single layer of deep self-organizing map network (deep SOM network) and a fully-connected neural network (FCNN), which imitates the function and structure of an amygdala. We applied the proposed amygdala model to a robot waiter task in a restaurant. The experimental results show that the model learned a customer's preferences after only a few human robot interactions. To develop the digital hardware of the amygdala model, we designed hardware for the deep SOM network and the FCNN and implemented them in an XCZU9EG field programmable gate array (FPGA). Our FPGA implementation of a deep SOM network with 272 neurons and an FCNN with three output neurons outperformed a software implementation on an Intel Core i5-3470 CPU by over 600 times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    4
    Citations
    NaN
    KQI
    []