Gauge theories as matrix models
2011
We discuss the relation between the Seiberg-Witten prepotentials, Nekrasov functions, and matrix models. On the semiclassical level, we show that the matrix models of Eguchi-Yang type are described by instantonic contributions to the deformed partition functions of supersymmetric gauge theories. We study the constructed explicit exact solution of the four-dimensional conformal theory in detail and also discuss some aspects of its relation to the recently proposed logarithmic beta-ensembles. We also consider “quantizing” this picture in terms of two-dimensional conformal theory with extended symmetry and stress its difference from the well-known picture of the perturbative expansion in matrix models. Instead, the representation of Nekrasov functions using conformal blocks or Whittaker vectors provides a nontrivial relation to Teichmuller spaces and quantum integrable systems.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
109
References
9
Citations
NaN
KQI