Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar.

2020 
Pharmaceutical and personal care products (PPCPs) are a representative class of emerging contaminants. This study aimed to investigate the PPCP removal performance and application safety of a biochar fabricated using the invasive plant Alternanthera philoxeroides (APBC). According to scanning electron microscopy and pore size analyses, APBC exhibited a porous structure with a specific surface area of 857.5 m2/g. A Fourier transform infrared spectroscopy analysis indicated the presence of surface functional groups, including phosphorus-containing groups, C=O, C=C, and -OH. The adsorption experiment showed that the maximum removal efficiency of ibuprofen was 97% at an initial concentration of 10 mg/L and APBC dosage of 0.8 g/L. The adsorption kinetics were fitted by the pseudo-second-order model with the highest correlation coefficient (R2 = 0.9999). The adsorption isotherms were well described by the Freundlich model (R2 = 0.9896), which indicates a dominant multilayer adsorption. The maximum adsorption capacity of APBC was 172 mg/g. A toxicity evaluation, based on Chlorella pyrenoidosa and human epidermal BEAS-2B cells, was carried out using a spectrum analysis, thiazolyl blue tetrazolium bromide assay, and flow cytometry. The results of the above showed the low cytotoxicity of APBC and demonstrated its low toxicity in potential environmental applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    3
    Citations
    NaN
    KQI
    []