Syntheses and evaluation of new Quinoline derivatives for inhibition of hnRNP K in regulating oncogene c-myc transcription

2019 
Abstract Aberrant overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key feature in oncogenesis and progression of many human cancers. hnRNP K has been found to be a transcriptional activator to up-regulate c-myc gene transcription, a critical proto-oncogene for regulation of cell growth and differentiation. Therefore, down-regulation of c-myc transcription by inhibiting hnRNP K through disrupting its binding to c-myc gene promoter is a potential approach for cancer therapy. In the present study, we synthesized and screened a series of Quinoline derivatives and evaluated their binding affinity for hnRNP K. Among these derivatives, ( E )-1-(4-methoxyphenyl)-3-(4-morpholino-6-nitroquinolin-2-yl)prop-2-en-1-one (compound 25 ) was determined to be the first-reported hnRNP K binding ligand with its K D values of 4.6 and 2.6 μM measured with SPR and MST, respectively. Subsequent evaluation showed that the binding of compound 25 to hnRNP K could disrupt its unfolding of c-myc promoter i-motif, resulting in down-regulation of c-myc transcription. Compound 25 showed a selective anti-proliferative effect on human cancer cell lines with IC 50 values ranged from 1.36 to 3.59 μM. Compound 25 exhibited good tumor growth inhibition in a Hela xenograft tumor model, which might be related to its binding with hnRNP K. These findings illustrated that inhibition of DNA-binding protein hnRNP K by compound 25 could be a new and selective strategy of regulating oncogene transcription instead of targeting promoter DNA secondary structures such as G-quadruplexes or i-motifs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    6
    Citations
    NaN
    KQI
    []