Spectroscopy of Cd98 by two-nucleon removal from In100

2021 
Low-lying states of Cd-98 have been populated by the two-nucleon removal reaction (In-100, Cd-98+gamma) and studied using in-beam gamma-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new gamma transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a pi 1g(/9/2)(-1)2p(1/2)(-2) configuration with J(pi) = 5(-). The present observation extends the systematics of the excitation energies of the first 5(-) state in N = 50 isotones toward Sn-100. The determined energy of the 5(- )state in Cd-98 continues a smooth trend along the N = 50 isotones. The systematics are compared with shell-model calculations in different model spaces. Good agreement is achieved when considering a model space consisting of the pi(1f(5/2), 2p(3/2), 2p(1/2), 1g(9/2)) orbitals. The calculations with a smaller model space omitting the orbitals below the Z = 38 subshell could not reproduce the experimental energy difference between the ground and first 5(-) states in N = 50 isotones, because proton excitations across Z = 38 subshell yield a large amount of correlation energy that lowers the ground states. (Less)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []