Structure-based design of nonpeptidic HIV protease inhibitors: the sulfonamide-substituted cyclooctylpyramones.

1997 
Recently, cyclooctylpyranone derivatives with m-carboxamide substituents (e.g. 2c) were identified as potent, nonpeptidic HIV protease inhibitors, but these compounds lacked significant antiviral activity in cell culture. Substitution of a sulfonamide group at the meta position, however, produces compounds with excellent HIV protease binding affinity and antiviral activity. Guided by an iterative structure-based drug design process, we have prepared and evaluated a number of these derivatives, which are readily available via a seven-step synthesis. A few of the most potent compounds were further evaluated for such characteristics as pharmacokinetics and toxicity in rats and dogs. From this work, the p-cyanophenyl sulfonamide derivative 35k emerged as a promising inhibitor, was selected for further development, and entered phase I clinical trials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    81
    Citations
    NaN
    KQI
    []