Single molecule fingerprinting reveals different amplification properties of α-synuclein oligomers and preformed fibrils in seeding assay

2021 
Abstract The quantification of α-synuclein (α-syn) aggregates has emerged as a promising biomarker for synucleinopathies. Assays that amplify and detect such aggregates have revealed the presence of seeding-competent species in biosamples of patients diagnosed with Parkinson’s disease. However, multiple species such as oligomers and amyloid fibrils, are formed during the aggregation of α-synuclein and these species are likely to co-exist in biological samples and thus it remains unclear which species(s) are contributing to the signal detected in seeding assays. To identify which species can be detected in seeding assays, recombinant oligomers and preformed fibrils were produced and purified to characterise their individual biochemical and seeding potential. Here, we used single molecule spectroscopy to track the formation and purification of oligomers and fibrils at the single particle level and compare their respective seeding potential in an amplification assay. Single molecule detection validates that size-exclusion chromatography efficiently separates oligomers from fibrils. Oligomers were found to be seeding-competent but our results reveal that their seeding behaviour is very different compared to preformed fibrils in our amplification assay. Overall, our data suggest that even a low number of preformed fibrils present in biosamples are likely to dominate the response in seeding assays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []