Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes

2019 
A highly resolved three-dimensional large-eddy simulation (LES) is presented for a shock tube containing a stoichiometric hydrogen–oxygen (\(\hbox {H}_2\)/\(\hbox {O}_2\)) mixture, and the results are compared against experimental results. A parametric study is conducted to test the effects of grid resolution, numerical scheme, and initial conditions before the 3D simulations are presented in detail. An approximate Riemann solver and a high-order interpolation scheme are used to solve the conservation equations of the viscous, compressible fluid and to account for turbulence behind the reflected shock. Chemical source terms are calculated by a finite-rate model. Simultaneous results of pseudo-Schlieren, temperature, pressure, and species are presented. The ignition delay time is predicted in agreement with the experiments by the three-dimensional simulations. The mechanism of mild ignition is analysed by Lagrangian tracer particles, tracking temperature histories of material particles. We observed strongly increased temperatures in the core region away from the end wall, explaining the very early occurrence of mild ignition in this case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    10
    Citations
    NaN
    KQI
    []