Intercluster exchanges leading to hydride-centered bimetallic clusters: a multi-NMR, X-ray crystallographic, and DFT study.

2021 
Encouraged by the successful syntheses of alloy nanoclusters (or nanoparticles) via intercluster (or interparticle) reactions, herein we apply this methodology to prepare a series of bimetallic hydride clusters. Mixing of two clusters, [Ag7(H){E2P(OiPr)2}6] (E = S, 1; Se, 3) and [Cu7(H){E2P(OiPr)2}6] (E = S, 2; Se, 4), yields two series of hydride-centered bimetallic clusters, [CuxAg7-x(H){E2P(OiPr)2}6] (x = 0-7; E = S, 5; Se, 6). Their compositions are fully characterized by positive-mode ESI-MS spectrometry, multi-NMR spectroscopy, and the structures of [Cu6Ag(H){S2P(OiPr)2}6] (5a) and [CuAg6(H){Se2P(OiPr)2}6] (6a) by single crystal X-ray diffraction. The presence of individual compounds in solution is the result of a (dynamic) chemical equilibrium primarily driven by metal exchanges. In fact, the process of inter-cluster exchange of 1 and 2 leading to hydride-centered bimetallic clusters 5 can be monitored by concentration-dependent 31P NMR spectroscopy of which the higher concentration of 1 in the reaction, the closer to its resonance will be the distribution, in accord with Le Chatelier's principle. The dynamic equilibrium is further confirmed by 2D exchange spectroscopy that reveals a stepwise process involving one metal exchange at a time. DFT calculations on a model series of clusters 6 show that silver prefers occupying the inner tetrahedral positions, while copper favors capping positions, in full agreement with the crystal structure of 5a and 6a.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []