Synthetic Tyr‐phospho and non‐hydrolyzable phosphonopeptides as PTKs and TC‐PTP inhibitors*

2009 
Tyrosine-specific protein kinases and phosphatases are important signal transducing enzymes in normal cellular growth and differentiation and have been implicated in the etiology of a number of human neoplastic processes. In order to develop agents which inhibit the function of these two classes of enzymes by interfering with the binding of their substrates, we synthesized analogs derived from the peptide EDNEYTA. This sequence reproduces the main autophosphorylation site of Src tyrosine kinases. In this work we report the synthesis, by classical solution methods, of the phosphotyrosyl peptide ED-NEYpTA as well as of three analogs in which the phosphotyrosine is replaced by a phosphinotyrosine and by two unnatural, non-hydrolyzable amino acids 4-phosphonomethyl-l-phenylalanine and 4-phosphono-l-phenylalanine. The Src peptide and its derivatives were tested as inhibitors of three non-receptor tyrosine kinases (Lyn, belonging to the Src family, CSK and PTK-IIB) and a non-receptor protein tyrosine phosphatase obtained from human T-cell (TC-PTP). The biomimetic analogues, which do not significantly affect the activity of CSK, PTK-IIB and TC-PTP, act:is efficient inhibitors on Lyn, influencing both the exogenous phosphorylation and, especially, its autophosphorylation. In particular, the Pphe derivative may provide a basis for the design of a class of inhibitors specific for Lyn and possibly Src tyrosine kinases, capable of being used in vivo and in vitro conditions. © Munksgaard 1995.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    8
    Citations
    NaN
    KQI
    []