High-speed refractive index sensing system based on Fourier domain mode locked laser

2019 
A high-speed refractive index sensing system based on the Fourier domain mode locked laser (FDML) and a microfiber Bragg grating (mFBG) is theoretically studied and experimentally demonstrated. Unlike traditional physical parameter sensing systems, which directly use the FDML as the wavelength scanning source and the optical sensor as the spectra shaping component, we inserted an mFBG into the FDML cavity in order to generate time domain pulse signals used for sensing. The wavelength shift in optical frequency domain is converted into time domain pulse drift. The sensitivity of the proposed refractive index (RI) sensing system is improved by two orders of magnitude, compared with the wavelength monitoring method. The scanning speed is as high as 43 kHz. Moreover, the sensitivity curve can be adjusted by tuning the direct current voltage. The nonlinear sensitivity and linear sensitivity with RI can be achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    3
    Citations
    NaN
    KQI
    []