Convection Dynamics Forced by Optical Trapping with a Focused Laser Beam

2020 
Optical trapping dynamics of colloidal particles in solution is essential for understanding laser-induced assembling of molecules and nanomaterials, which contributes to nanofabrication, bioengineering, and microfluidics. In this paper, the importance of the surrounding fluid motion in optical trapping is investigated; that is, we reveal convection fluid dynamics forced by optical trapping with a focused laser beam. The fluid flow in optical trapping is evaluated by both experiments using the particle-image-velocimetry of fluorescent particles in solutions and theoretical consideration based on numerical analysis. A theoretical model consists of Navier–Stokes equations with the Boussinesq approximation that considers the temperature elevation induced by a photothermal effect. Furthermore, the effect of the particle motion induced by the optical force on fluid flow is also included in the analysis by developing a simple one-way homogeneous-type multiphase flow model. From both experimental and theoretical results, it turns out that the fluid flow in optical trapping is caused not only by thermal convection due to the temperature elevation but also by the collective particle motion induced by optical forces. Therefore, the optical forces can induce the large-scale fluid convection, which supports accumulating the target particles to the focal spot.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []