A Robust and Efficient Pd3 Cluster Catalyst for the Suzuki Reaction and Its Odd Mechanism

2017 
The palladium-catalyzed Suzuki–Miyaura coupling reaction is one of the most versatile and powerful tools for constructing synthetically useful unsymmetrical aryl–aryl bonds. In designing a Pd cluster as a candidate for efficient catalysis and mechanistic investigations, it was envisaged to study a case intermediate between, although very different from, the “classic” Pd(0)Ln and Pd nanoparticle families of catalysts. In this work, the cluster [Pd3Cl(PPh2)2(PPh3)3]+[SbF6]− (abbreviated Pd3Cl) was synthesized and fully characterized as a remarkably robust framework that is stable up to 170 °C and fully air-stable. Pd3Cl was found to catalyze the Suzuki–Miyaura C–C cross-coupling of a variety of aryl bromides and arylboronic acids under ambient aerobic conditions. The reaction proceeds while keeping the integrity of the cluster framework all along the catalytic cycle via the intermediate Pd3Ar, as evidenced by mass spectrometry and quick X-ray absorption fine structure. In the absence of the substrate under ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    49
    Citations
    NaN
    KQI
    []