High vitamin B2 production by the Lactiplantibacillus plantarum B2 strain carrying a mutation in the aptamer P1 helix of the FMN-riboswitch that regulates expression of the bacterial rib operon

2021 
Manufacturing of probiotics and functional foods using lactic acid bacteria that overproduce vitamin B2 has gained growing interest due to ariboflavinosis problems affecting populations of both developing and affluent countries. Two isogenic Lactiplantibacillus plantarum strains, namely a riboflavin-producing parental strain (UFG9) and a roseoflavin-resistant strain (B2) that carries a mutation in the FMN-aptamer of the potential rib operon riboswitch, were analyzed for production and intra- and extracellular accumulation of flavins, as well as for regulation of the rib operon expression. Strain B2 accumulated in the medium one of the highest levels of riboflavin+FMN ever reported for lactic acid bacteria, exceeding by ~25 times those accumulated by UFG9. Inside the cells, concentration of FAD was similar in both strains, while that of riboflavin+FMN was ~6-fold higher in B2. Mutation B2 could decrease the stability of the aptamer9s regulatory P1 helix even in the presence of the effector, thus promoting the antiterminator structure of the riboswitch ON state. Although the B2-mutant riboswitch showed an impaired regulatory activity, it retained partial functionality being still sensitive to the effector. The extraordinary capacity of strain B2 to produce riboflavine, together with its metabolic versatility and probiotic properties, can be exploited for manufacturing multifunctional foods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []