Understanding and Regulating Cell-Matrix Interactions Using Hydrogels of Designable Mechanical Properties.

2021 
Similar to natural tissues, hydrogels contain abundant water, so they are considered as promising biomaterials for studying the influence of the mechanical properties of extracellular matrices (ECM) on various cell functions. In recent years, the growing research on cellular mechanical response has revealed that many cell functions, including cell spreading, migration, tumorigenesis and differentiation, are related to the mechanical properties of ECM. Therefore, how cells sense and respond to the extracellular mechanical environment has gained considerable attention. In these studies, hydrogels are widely used as the in vitro model system. Hydrogels of tunable stiffness, viscoelasticity, degradability, plasticity, and dynamical properties have been engineered to reveal how cells respond to specific mechanical features. In this review, we summarize recent process in this research direction and specifically focus on the influence of the mechanical properties of the ECM on cell functions, how cells sense and respond to the extracellular mechanical environment, and approaches to adjusting the stiffness of hydrogels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []