Predictive Model for Thermal and Stress Field in Selective Laser Melting Process—Part II

2019 
Abstract During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated into the model capturing the change from powder to fully dense solid stainless steel. Surface temperature gradients and thermal stress were fully presented in the development of different parameter sets, which designed for the probability of reducing defect formation. Simulation results showed that the sequent thermal cyclic melting in successive scanned tracks resulted in alternating compressive and tensile thermal stresses. A predictive model for thermal and stress field in large part by selective laser melting process is come up in Part II. After the parts cooled down to room temperature, higher residual stresses were found in longitudinal stress. This paper will provide guidance on how to achieve minimum residual stresses and deformations by the study of the process parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []