Glucagon-like peptide 1 treatment reverses vascular remodelling by downregulating matrix metalloproteinase 1 expression through inhibition of the ERK1/2/NF-κB signalling pathway.

2020 
Abstract In addition to serving as an incretin-based treatment of type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 (GLP-1) can also reverse cardiovascular diseases caused by vascular remodelling. However, a detailed mechanism underlying how GLP-1 reverses vascular remodelling remains unclear. Here, Spontaneous hypertension rats (SHR) were used as an in vivo model of vascular remodelling. Treatment with a GLP-1 receptor (GLP-1R) agonist Liraglutide or dipeptidyl peptidase 4 (DPP4) inhibitor Alogliptin decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), thickness of vascular wall, and overall collagen levels in SHR. In vitro vascular remodelling can be induced by exposing rat aortic smooth muscle cells (RASMC) to angiotensin II (Ang II); GLP-1 treatment attenuated AngII induction of RASMC proliferation, migration, and excessive extracellular matrix (ECM) degradation. Downregulation of matrix metalloproteinase 1 (MMP1) enhanced the inhibitory effects of GLP-1, and extracellular regulated protein kinase 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) signalling participated in these processes. These results provide a new mechanistic understanding of key therapeutic strategies for the treatment of vascular remodelling-related diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    2
    Citations
    NaN
    KQI
    []