Assessing the efficacy of asynchronous telehealth-based hearing screening and diagnostic services using automated audiometry in a rural South African school

2018 
Background:  Asynchronous automated telehealth-based hearing screening and diagnostic testing can be used within the rural school context to identify and confirm hearing loss. Objective:  The aims of the study were to evaluate the efficacy of an asynchronous telehealth-based service delivery model using automated technology for screening and diagnostic testing as well as to describe the prevalence, type and degree of hearing loss. Method:  A comparative within-subject design was used. Frequency distributions, sensitivity, specificity scores as well as the positive and negative predictive values were calculated. Testing was conducted in a non-sound-treated classroom within a school environment on 73 participants (146 ears). The sensitivity and specificity rates were 65.2% and 100%, respectively. Diagnostic accuracy was 91.7% and the negative predictive values (NPV) and positive predictive values (PPV) were 93.8% and 100%, respectively. Results:  Results revealed that 23 ears of 20 participants (16%) presented with hearing loss. Twelve per cent of ears presented with unilateral hearing impairment and 4% with bilateral hearing loss. Mild hearing loss was identified as most prevalent (8% of ears). Eight ears obtained false-negative results and presented with mild low- to mid-frequency hearing loss. The sensitivity rate for the study was low and was attributed to plausible reasons relating to test accuracy, child-related variables and mild low-frequency sensory-neural hearing loss. Conclusion:  The study demonstrates that asynchronous telehealth-based automated hearing testing within the school context can be used to facilitate early identification of hearing loss; however, further research and development into protocol formulation, ongoing device monitoring and facilitator training is required to improve test sensitivity and ensure accuracy of results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    8
    Citations
    NaN
    KQI
    []