Proton-Coupled Redox Switching in an Annulated π-Extended Core-Modified Octaphyrin

2018 
Proton-coupled electron transfer (PCET) is an important chemical and biological phenomenon. It is attractive as an on–off switching mechanism for redox-active synthetic systems but has not been extensively exploited for this purpose. Here we report a core-modified planar weakly antiaromatic/nonaromatic octaphyrin, namely, a [32]octaphyrin(1.0.1.0.1.0.1.0) (1) derived from rigid naphthobipyrrole and dithienothiophene (DTT) precursors, that undergoes proton-coupled two-electron reduction to produce its aromatic congener in the presence of HCl and other hydrogen halides. Evidence for the production of a [4n + 1] π-electron intermediate radical state is seen in the presence of trifluoroacetic acid. Electrochemical analyses provide support for the notion that protonation causes a dramatic anodic shift in the reduction potentials of octaphyrin 1, thereby facilitating electron transfer from halide anions (viz. I–, Br–, and, Cl–). Electron-rich molecules, such as tetrathiafulvene (TTF), phenothiazine (PTZ), and c...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    22
    Citations
    NaN
    KQI
    []