Effects of Potassium Salts on Formaldehyde Decomposition in Supercritical Water

2014 
To explore the mechanism of the potassium effect on the biomass gasification process in supercritical water (SCW), formaldehyde, a typical intermediate formed in the process, was used as the feedstock and the experiments were carried out in a temperature range of 400–650 °C, a pressure range of 23–29 MPa, and a residence time range of 4–12 s, with KHCO3, K2CO3, KCl, and mixed potassium salts. The results showed that all potassium salts studied decreased the gasification efficiency and the yields of H2, CO2, and CO of formaldehyde. The inhibition level of gasification efficiency and hydrogen generation influenced by the potassium salts was on the order of mixed potassium salts > KHCO3 > K2CO3 > KCl. At the high temperatures (500–650 °C) and long residence times (8–12 s), the negative effects of the potassium salts on gaseous product generation were enhanced. The effects of the potassium salts on the gasification efficiency and hydrogen generation had slight dependence upon the pressure. At the high tempera...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    6
    Citations
    NaN
    KQI
    []