Accounting for Errors in Quantum Algorithms via Individual Error Reduction

2018 
We discuss a surprisingly simple scheme for accounting (and removal) of error in observables determined from quantum algorithms. A correction to the value of the observable is calculated by first measuring the observable with all error sources active and subsequently measuring the observable with each error source removed separately. We apply this scheme to the variational quantum eigensolver, simulating the calculation of the ground state energy of equilibrium H$_2$ and LiH in the presence of several noise sources, including amplitude damping, dephasing, thermal noise, and correlated noise. We show that this scheme provides a decrease in the needed quality of the qubits by up to two orders of magnitude. In near-term quantum computers, where full fault-tolerant error correction is too expensive, this scheme provides a route to significantly more accurate calculation
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []