A Modeling Framework for Troubleshooting Automotive Systems

2016 
This article presents a novel framework for modeling the troubleshooting process for automotive systems such as trucks and buses. We describe how a diagnostic model of the troubleshooting process can be created using event-driven, nonstationary, dynamic Bayesian networks. Exact inference in such a model is in general not practically possible. Therefore, we evaluate different approximate methods for inference based on the Boyen–Koller algorithm. We identify relevant model classes that have particular structure such that inference can be made with linear time complexity. We also show how models created using expert knowledge can be tuned using statistical data. The proposed learning mechanism can use data that is collected from a heterogeneous fleet of modular vehicles that can consist of different components. The proposed framework is evaluated both theoretically and experimentally on an application example of a fuel injection system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []