Analysis of Surface Deformation and Physical and Mechanical Parameters of Soils on Selected Skid Trails in the Gorce National Park

2021 
Skidding is considered to be one of the most stressful works for the forest environment. This paper presented the results obtained from the analysis of soil deformation and selected physical and mechanical parameters of soils on skid trails in the Gorce National Park. The study analyzed two horse and tractor skid trails that are in continuous use in the park. Measurements of parameters were recorded before (summer) and after (autumn) a total of 81 skidding cycles, using a profilometer and a penetrometer, and soil samples were collected for analysis. The measurements obtained from the horse trails indicated that soil compactness was considerably higher in the lower sections of the trails and on the side more loaded by horse traffic and the transported load, which was related to the trail course in the field. The values of penetration resistance were high in the middle of those trails, reaching 6.8 MPa in the layer up to 10 cm. In the tractor trail the values of soil compactness reached 7.62 MPa in the layer up to 10 cm deep and were similar across the width of the trail and deep into the soil profile, with only slight changes observed in the monitored period. As a result of skidding, there were increases in the maximum depth of ruts reaching up to 4.6% on horse trails and up to 10.8% on tractor trails. Soil erosion per 10 m of trail caused by skidding and other natural factors during the study reached 1.314 and 0.390 m3 for the tractor and horse trail, respectively, wherein volume of skidded wood on the tractor trail was 180.1, and 18.1 m3 on horse trails. This confirms that the volume of eroded soil on the trails is determined by the type of skidder used and volume of skidded wood, so it is important to choose the right kind of skidder based on the conditions in which the skidding work will be carried out.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []