Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide

2016 
Abstract Application of layered nickel cobalt manganese oxide as cathode under higher potential than conventional 4.2 V yields a significant improvement in energy density of lithium ion battery. However, the cathode fully charged under high potential suffers serious self-discharge, in which the interaction between the cathode and electrolyte proceeds without potential limitation. In this work, we use tris(trimethylsilyl)phosphate (TMSP) as an electrolyte additive to solve this problem. A representative layered nickel cobalt manganese oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , is considered. The effect of TMSP on self-discharge behavior of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is evaluated by physical and electrochemical methods. It is found that the self-discharge of charged LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be suppressed significantly by using TMSP. TMSP is oxidized preferentially in comparison with the standard electrolyte during initial charging process forming a protective cathode interface film, which avoids the interaction between cathode and electrolyte at any potential and thus prevents electrolyte decomposition and protects LiNi 1/3 Co 1/3 Mn 1/3 O 2 from structure destruction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    27
    Citations
    NaN
    KQI
    []