The representation of three-way proximity data by single and multiple tree structure models
1984
Models for the representation of proximity data (similarities/dissimilarities) can be categorized into one of three groups of models: continuous spatial models, discrete nonspatial models, and hybrid models (which combine aspects of both spatial and discrete models). Multidimensional scaling models and associated methods, used for thespatial representation of such proximity data, have been devised to accommodate two, three, and higher-way arrays. At least one model/method for overlapping (but generally non-hierarchical) clustering called INDCLUS (Carroll and Arabie 1983) has been devised for the case of three-way arrays of proximity data. Tree-fitting methods, used for thediscrete network representation of such proximity data, have only thus far been devised to handle two-way arrays. This paper develops a new methodology called INDTREES (for INdividual Differences in TREE Structures) for fitting various(discrete) tree structures to three-way proximity data. This individual differences generalization is one in which different individuals, for example, are assumed to base their judgments on the same family of trees, but are allowed to have different node heights and/or branch lengths.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
43
Citations
NaN
KQI