Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

2015 
The present paper describes further development of the multiscale informatics approach to kinetic model formulation of Burke et al. (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555) that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation of kinetic models to unexplored conditions. Here, we extend and generalize the multiscale informatics strategy to treat systems of considerable complexity—involving multiwell reactions, potentially missing reactions, nonstatistical product branching ratios, and non-Boltzmann (i.e., nonthermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multiscale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems meas...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    29
    Citations
    NaN
    KQI
    []