Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task

2015 
Abstract Reward availability is known to facilitate various cognitive operations, which is usually studied in cue-based paradigms that allow for enhanced preparation in reward-related trials. However, recent research using tasks that signal reward availability via task-relevant stimuli suggests that reward can also rapidly promote performance independent of global strategic preparation. Notably, this effect was also observed in a reward-related stop-signal task, in which behavioral measures of inhibition speed were found to be shorter in trials signaling reward. Corresponding fMRI results implied that this effect relies on boosted reactive control as indicated by increased activity in the ‘inhibition-related network’ in the reward-related condition. Here, we used EEG to better characterize transient modulations of attentional processes likely preceding this ultimate implementation of response inhibition. Importantly, such modulations would probably reflect enhanced proactive control in the form of more top-down attention to reward-related features. Counter to the notion that behavioral benefits would rely purely on reactive control, we found increased stop-evoked attentional processing (larger N1 component) on reward-related trials. This effect was accompanied by enhanced frontal P3 amplitudes reflecting successful stopping, and earlier and larger ERP differences between successful and failed stop trials in the reward-related condition. Finally, more global proactive control processes in the form of a reward context modulation of reward-unrelated trials did not have an effect on stopping performance but did influence attentional processing of go stimuli. Together, these results suggest that proactive and reactive processes can interact to bring about stimulus-specific reward benefits when the task precludes differential global preparation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    34
    Citations
    NaN
    KQI
    []