Mechanisms of amitraz resistance in a Rhipicephalus microplus strain from southern Brazil.

2021 
Abstract Amitraz is one of the most used acaricides for the control of ticks of domestic animals, however, extensive use of this active ingredient has favored the development of resistant populations of Rhipicephalus microplus worldwide. The possible mechanisms of metabolic and/or target-site alterations mechanisms of amitraz resistance were investigated in a Brazilian field population of R. microplus (Sao Gabriel strain). Bioassays with the synergists piperonylbutoxide, triphenylphosphate and diethyl-maleate were used to evaluate the metabolic mechanisms involved. Target-site insensitivity was investigated by amplification and sequencing of a fragment of the octopamine/tyramine (OCT/TYR) receptor gene. Piperonylbutoxide synergism (synergism ratio = 2.8) indicated the participation of the P450 pathway in the detoxification of amitraz. Previously reported single nucleotide polymorphisms that confer amino acid changes in the OCT/TYR receptor, threonine to proline (T8P) and leucine to serine (L22S), were found in the amitraz-resistant strain but not in the susceptible reference strain. The results suggest that amitraz resistance in the studied strain is multi-factorial and may result from cytochrome P450 detoxification and mutations in octopamine receptors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []