Miniscule differences between the sex chromosomes in the giant genome of a salamander, Ambystoma mexicanum

2018 
In the Mexican axolotl (Ambystoma mexicanum) sex is known to be determined by a single Mendelian factor, yet the sex chromosomes of this model salamander do not exhibit morphological differentiation that is typical of many vertebrate taxa that possess a single sex-determining locus. Differentiated sex chromosomes are thought to evolve rapidly in the context of a Mendelian sex-determining gene and, therefore, undifferentiated chromosomes provide an exceptional opportunity to reconstruct early events in sex chromosome evolution. Whole chromosome sequencing, whole genome resequencing (48 individuals from a backcross of axolotl and tiger salamander) and in situ hybridization were used to identify a homomorphic chromosome that carries an A. mexicanum sex determining factor and identify sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb, or roughly 1/100,000th of the ~32 Gb genome. Notably, these W-specific sequences also contain a recently duplicated copy of the ATRX gene: a known component of mammalian sex-determining pathways. This gene (designated ATRW) is one of the few functional (non-repetitive) genes in the chromosomal segment and maps to the tip of chromosome 9 near the marker E24C3, which was previously found to be linked to the sex-determining locus. These analyses provide highly predictive markers for diagnosing sex in A. mexicanum and identify ATRW as a strong candidate for the primary sex determining locus or alternately a strong candidate for a recently acquired, sexually antagonistic gene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    2
    Citations
    NaN
    KQI
    []