Fractals of graphene quantum dots in photoluminescence of shungite

2013 
Photoluminescence of graphene quantum dots (GQDs) of shungite, attributed to individual fragments of reduced graphene oxide (rGO), has been studied for the frozen rGO colloidal dispersions in water, carbon tetrachloride, and toluene. Morphological study shows a steady trend of GQDs to form fractals and a drastic change in the colloids fractal structure caused by solvent was reliably established. Spectral study reveals a dual character of emitting centers: individual GQDs are responsible for the spectra position while fractal structure of GQD colloids provides high broadening of the spectra due to structural inhomogeneity of the colloidal dispersions and a peculiar dependence on excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions which pave the way for a theoretical treatment of GQD photonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    16
    Citations
    NaN
    KQI
    []