Pathophysiological mapping of tumor habitats in the breast in DCE-MRI using molecular texture descriptor

2019 
Abstract Background We propose a computational methodology capable of detecting and analyzing breast tumor habitats in images acquired by magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI), based on the pathophysiological behavior of the contrast agent (CA). Methods The proposed methodology comprises three steps. In summary, the first step is the acquisition of images from the Quantitative Imaging Network Breast. In the second step, the segmentation of the breasts is performed to remove the background, noise, and other unwanted objects from the image. In the third step, the generation of habitats is performed by applying two techniques: the molecular texture descriptor (MTD) that highlights the CA regions in the breast, and pathophysiological texture mapping (MPT), which generates tumor habitats based on the behavior of the CA. The combined use of these two techniques allows the automatic detection of tumors in the breast and analysis of each separate habitat with respect to their malignancy type. Results The results found in this study were promising, with 100% of breast tumors being identified. The segmentation results exhibited an accuracy of 99.95%, sensitivity of 71.07%, specificity of 99.98%, and volumetric similarity of 77.75%. Moreover, we were able to classify the malignancy of the tumors, with 6 classified as malignant type III (WashOut) and 14 as malignant type II (Plateau), for a total of 20 cases. Conclusion We proposed a method for the automatic detection of tumors in the breast in DCE-MRI and performed the pathophysiological mapping of tumor habitats by analyzing the behavior of the CA, combining MTD and MPT, which allowed the mapping of internal tumor habitats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []