Synchrotron FTIR Light Reveals Signal Changes of Biofunctionalized Magnetic Nanoparticle Attachment on Salmonella sp.
2020
The objective of this research was to develop new technology for possible noncontact, nondestructive, and culture-independent rapid detection of Salmonella using ferromagnetic nanoparticles. Light signal changes of particles, cells, and their reaction stages were investigated. Amino-functionalized ferromagnetic nanoparticles (amino-FMNs) were synthesized and modified by glutaraldehyde to crosslink the attachment of specific antibodies to the particles. The nanoparticle complex was used to capture, concentrate, and isolate Salmonella in a culture broth. Signal changes of the four stages of the nanoparticles-amino-glutaraldehyde-antibodies-Salmonella cell attachments were tracked with sensitive Synchrotron FTIR spectroscopy (SR-FTIR). The unique peaks from these four steps were identified. Results can be applied to develop a new test method or a new test/universal reader for rapid, nondestructive, and culture-independent detection of Salmonella in food products using IR spectroscopy at wave numbers 1454 cm-1, 1542 cm-1, and 1414 cm-1, respectively.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
1
Citations
NaN
KQI