PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions

2019 
Expanded CAG nucleotide repeats are the underlying genetic cause of at least 14 incurable diseases, including Huntington9s disease (HD).  The toxicity associated with many CAG repeat expansions is thought to be due to the translation of the CAG repeat to create a polyQ protein, which forms toxic oligomers and aggregates.  However, recent studies show that HD CAG repeats undergo a non-canonical form of translation called Repeat-associated non-AUG dependent (RAN) translation.  RAN translation of the CAG sense and CUG anti-sense RNAs produces six distinct repeat peptides: polyalanine (polyAla, from both CAG and CUG repeats), polyserine (polySer), polyleucine (polyLeu), polycysteine (polyCys), and polyglutamine (polyGln).  The toxic potential of individual CAG-derived RAN polypeptides is not well understood.  We developed pure C. elegans protein models for each CAG RAN polypeptide using codon-varied expression constructs that preserve RAN protein sequence but eliminate repetitive CAG/CUG RNA.  While all RAN polypeptides formed aggregates, only polyLeu was consistently toxic across multiple cell types.  In GABAergic neurons, which exhibit significant neurodegeneration in HD patients, codon-varied (Leu)38, but not (Gln)38, caused substantial neurodegeneration and motility defects.  Our studies provide the first in vivo evaluation of CAG-derived RAN polypeptides and suggest that polyQ-independent mechanisms, such as RAN-translated polyLeu peptides, may have a significant pathological role in CAG repeat expansion disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []