Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites

2013 
In this work, a facile strategy for the fabrication of PANI/multi-walled carbon nanotube (MWCNT) nanocomposites without the assistance of a dispersant is introduced. MWCNTs and polyaniline were homogeneously mixed by cryogenic grinding (CG) and then consolidated via Spark Plasma Sintering (SPS). X-ray power diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) were employed to characterize the as-prepared composites. The XRD results showed that cryogenic grinding can refine the grain size of PANI and induce more dislocations. The FTIR spectra data showed that the peaks of the PANI/MWNT composites displayed a red shift. In the high resolution FESEM image, the layer-by-layer structure and smooth surface can be observed. The thermoelectric properties of the as-prepared nanocomposites were investigated as a function of MWCNT content. The results showed that the electrical conductivity increased remarkably with the increasing MWCNT content, and the maximum power factor was 10.73 × 10−8 W mK−2, higher than pure PANI. Additionally, as the MWNT content increased from 10% to 30%, the electrical conductivity of the PANI/MWNT composite increased from 3.51 S m−1 to 1.59 × 102 S m−1. This work demonstrates a simple and effective method for improving the dispersity of carbon nanotubes and the thermoelectric properties of conducting polymers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    72
    Citations
    NaN
    KQI
    []