Single-File Water Flux Through Two-Dimensional Nanoporous Membranes.

2020 
Recent advances in the development of two-dimensional (2D) materials have facilitated a wide variety of surface chemical characteristics obtained by composing atomic species, pore functionalization, etc. The present study focused on how chemical characteristics such as hydrophilicity affects the water transport rate in hexagonal 2D membranes. The membrane-water interaction strength was tuned to change the hydrophilicity, and the sub-nanometer pore was used to investigate single-file flux, which is known to retain excellent salt rejection. Due to the dewetting behavior of the hydrophobic pore, the water flux was zero or nominal below the threshold interaction strength. Above the threshold interaction strength, water flux decreased with an increase in interaction strength. From the potential of mean force analysis and diffusion coefficient calculations, the proximal region of the pore entrance was found to be the dominant factor degrading water flux at the highly hydrophilic pore. Furthermore, the superiority of 2D membranes over 3D membranes appeared to depend on the interaction strength. The present findings will have implications in the design of 2D membranes to retain a high water filtration rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    1
    Citations
    NaN
    KQI
    []