Computational Fluid Dynamics Simulations of Supersonic Inflatable Aerodynamic Decelerator Ballistic Range Tests

2019 
The free-flight behavior of entry vehicles can greatly impact vehicle and mission design. Current methodologies rely heavily on ground and flight experiments, while computational fluid dynamics is largely used as a complement to experiments in the form of static aerodynamic databases. The dynamic stability of entry vehicles is primarily studied through ballistic range experiments and flight tests. In an effort to validate the predictive capabilities of computational fluid dynamics for free-flight aerodynamic behavior, numerical simulations of a ballistic range experiment are performed using the unstructured finite-volume Navier–Stokes solver, US3D. The ballistic range tests used for comparison in this paper were performed on a scaled model of the Supersonic Inflatable Aerodynamic Decelerator geometry. The purpose of these experiments was to provide aerodynamic coefficients of the vehicle as an a priori analysis of dynamic stability coefficients ahead of the Supersonic Flight Demonstration Test. The range ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []