Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries

2019 
Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density. Their usage, however, is largely hampered by the fast capacity fade. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO2 system. In this study, we find that both H+/Zn2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By limiting the irreversible conversion reactions at ∼1.26 V, we successfully demonstrate ultrahigh power and long life that are superior to most of the reported ZIBs or even some lithium-ion batteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    95
    Citations
    NaN
    KQI
    []