Self-organised fractional quantisation in a hole quantum wire
2018
We have investigated hole transport in quantum wires formed by electrostatic confinement in strained germanium two-dimensional layers. The ballistic conductance characteristics show the regular staircase of quantum levels with plateaux at n2e2/h, where n is an integer, e is the fundamental unit of charge and h is Planck's constant. However as the carrier concentration is reduced, the quantised levels show a behaviour that is indicative of the formation of a zig-zag structure and new quantised plateaux appear at low temperatures. In units of 2e2/h the new quantised levels correspond to values of n = 1/4 reducing to 1/8 in the presence of a strong parallel magnetic field which lifts the spin degeneracy but does not quantise the wavefunction. A further plateau is observed corresponding to n = 1/32 which does not change in the presence of a parallel magnetic field. These values indicate that the system is behaving as if charge was fractionalised with values e/2 and e/4, possible mechanisms are discussed. [Abstract copyright: © 2018 IOP Publishing Ltd.]
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
12
Citations
NaN
KQI