Direct Fabrication of CsPbxMn1−x(Br,Cl)3 Thin Film by a Facile Solution Spraying Approach

2021 
Nowadays, Mn-doping is considered as a promising dissolution for the heavy usage of toxic lead in CsPbX3 perovskite material. Interestingly, Mn-doping also introduces an additional photoluminescence band, which is favorable to enrich the emission gamut of this cesium lead halide. Here, a solution spraying strategy was employed for the direct preparation of CsPbxMn1−x(Br,Cl)3 film through MnCl2 doping in host CsPbBr3 material. The possible fabrication mechanism of the provided approach and the dependences of material properties on Mn-doping were investigated in detail. As the results shown, Pb was partially substituted by Mn as expected. With the ratio of PbBr2:MnCl2 increasing from 3:0 to 1:1, the obtained film separately featured green, cyan, orange-red and pink-red emission, which was caused by the energy transferring process. Moreover, the combining energy of Cs, Pb, and Mn gradually red-shifted resulted from the formation of Cs-Cl, Pb-Cl and Mn-Br coordination bonding as MnCl2 doping increased. In addition, the weight of short decay lifetime of prepared samples increased with the doping rising, which indicated a better exciton emission and less defect-related transition. The aiming of current work is to provide a new possibility for the facile preparation of Mn-doping CsPbX3 film material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []