Effect of Re-burn Fuel Stream Location on NO Reduction in a Model Pulverized Coal Combustor

2021 
I is missing this work, a computational simulation has been performed to investigate the positional effect of reburn fuel injection on NO-reburn. Reburn fuel methane is injected across the coal injection plane at different axial positions of the combustor. Various major NO source mechanisms are considered for NO formation and NO reburn mechanism is used for NO depletion. Temperature profile, species concentration are also investigated, as both NO formation and depletion rate depends on these parameters. It has been observed that, a high temperature flame exists near coal inlet, when the reburn fuel injection plane is closer to coal inlet. On the other hand, the temperature of the flame near the coal inlet decreases when the reburn fuel injection position is far away from coal inlet region.  Moreover, NO sources are observed near coal inlet region, when the reburn fuel is injected closer to coal inlet. On the other hand, only Fuel-NO is observed near coal inlet, when the reburn fuel is injected away from the coal inlet. Maximum NO reduction efficiency is observed at outlet plane when reburn fuel is injected closer to inlet, whereas a relatively lower NO reduction efficiency has been observed at outlet plane when reburn fuel is injected far away from coal inlet region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []