LncRNA PCGEM1 enhances metastasis and gastric cancer invasion through targeting of miR-129-5p to regulate P4HA2 expression.

2020 
Abstract Aim Aberrantly expressed long non-coding RNAs (lncRNAs) are critical instigators of gastric cancer (GC) progression and metastasis. The ceRNA (competing endogenous RNAs) network is well-known in modulating tumor pathological and physiological processes. This research aims to determine the more effective molecular mechanisms of lncRNA PCGEM1 (prostate cancer gene expression marker 1). Methods Bioinformatics database and Ago2-RIP were performed to predict and verify the potential targets of lncRNA PCGEM1. Both gain- and loss-of-function experiments were carried out to dissect the biological functions of RNAs. Fluorescence in situ hybridization, dual-luciferase reporter assays, western blot, and real-time PCR (RT-PCR) experiments were utilized to determine the pathophysiological pathways of competitive endogenous RNAs (ceRNAs). Results GC cells expressed high levels of cytoplasmic PCGEM1. Loss-of-function experiments displayed that the silencing of PCGEM1 suppressed metastatic and invasive cell qualities. PCGEM1 was also found to have associations with miR-129-5p. Subsequently, luciferase reporter and RIP experiments, together with RT-PCR, verified that PCGEM1 functioned as a ceRNA of P4HA2 (Prolyl 4-Hydroxylase Subunit Alpha 2) via sponging miR-129-5p to up-regulate P4HA2 expression. Finally, the rescue assays determined that P4HA2 overexpression rescued the inhibited cell invasion and metastasis caused by PCGEM1 down-regulation. Conclusion These findings found that an over-expression of PCGEM1 in GC acts as a miR-129-5p sponge, leading to higher levels of P4HA2. The PCGEM1/miR-129-5p/P4HA2 axis was confirmed to possess a crucial role in GC metastasis and invasion, suggesting its utility as a potential diagnostic and therapeutic biomarker.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    6
    Citations
    NaN
    KQI
    []