From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage

2021 
Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (  1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    6
    Citations
    NaN
    KQI
    []